RAPIDY)

< RETOUR AU BLOG

RECHERCHE SUR LES MENACES

La Porte dérobee de la Chrysalide :
une plongée approfondie dansla
boite a outils de Lotus Blossom.

™ |van Feigl

2 février 2026 | Derniére mise & jour le 4 février 2026 | 19 minutes de lecture

@

Any questions about Rapid7's solution or
services? | can have a teammate jump in on
chat right now!

https://www.rapid7.com/blog/
https://www.rapid7.com/blog/author/ivan-feigl/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/

RAPIDY)

pour ses campagnes d'espionnage ciblées touchant principalement des organisations en
Asie du Sud-Est et plus recemment en Amérique centrale, se concentrant sur les
secteurs gouvernemental, télécom, aviation, infrastructures critiques et médias.

Notre enquéte a identifié un incident de sécurité résultant d'une compromission
sophistiquée de l'infrastructure hébergeant Notepad++, qui a ensuite été utilisée pour
livrer une porte dérobée personnalisée jusque-la non documentée, que nous avons
baptisée Chrysalis .

Figure 1: Téléemétrie sur les échantillons personnalisés de porte dérobée

M

Au-dela de la découverte du nouvel implant, des preuves médico-légales nous ont permis
de découvrir plusieurs chargeurs personnalisés dans la nature. Un exemple, «
ConsoleApplication2.exe », se distingue par son utilisation de Microsoft Warbird, un
framework complexe de protection de code, pour masquer I'exécution du shellcode. Ce
blog propose une analyse technique approfondie de Chrysalis, du chargeur Warbird, et

https://www.rapid7.com/

RAPIDY)

Vecteur d'acces initial : Notepad++ et
update.exe

L'analyse médico-légale menée par I'équipe MDR suggére que le vecteur d'acces initial
correspond a un abus rendu public de l'infrastructure de distribution Notepad++. Bien
que les rapports fassent référence a la fois aux mécanismes de remplacement de plugins
et liés aux mises a jour, aucun artefact définitif n'a été identifié pour confirmer
I'exploitation de I'un ou I'autre. Le seul comportement confirmé est que I'exécution de «
notepad++.exe » puis de « GUP.exe » a précédé l'exécution d'un processus suspect «
update.exe » téléchargé depuis 95.179.213.0.

Analyse de update.exe

CIQ;J
o log.di
(malicious dil

> D < >
ED =0

C&C
BluetoothService exe Server
(renamed Bitdefender

Submission Wizard)

BluetoothService
{encrypted shellicode)

Figure 2 : Diagramme d‘exécution de update.exe
an

L'analyse de « update.exe » montre que le fichier est en réalité un installateur NSIS, un
outil couramment utilisé par les APT chinois pour livrer la charge utile initiale. @

Voici les fichiers d'installation NSIS extraits :

https://notepad-plus-plus.org/news/hijacked-incident-info-update/
https://www.rapid7.com/blog/post/2025/05/22/nsis-abuse-and-srdi-shellcode-anatomy-of-the-winos-4-0-campaign/
https://www.rapid7.com/

RAPIDY)

e Description : Script d'installation NSIS
o SHA-256:
8ea8b83645fbabe23d48075a0d3fc73ad2ba515b4536710cdadf1f232718f53e

BluetoothService.exe

» Description : renommé Bitdefender Submission Assistant utilisé pour le sideloading
DLL

 SHA-256:
2da00de67720f5f13b17€9d985fe70f10f153da60c9ab1086fe58f069a156924

BluetoothService

o Description : Code-shell chiffré
o SHA-256 : 77bfea78def679aal117f569a35e8fd1542df21f7e00e27f192c907e61d63a2e

log.dli

o Description : DLL malveillante installée en paralléle par BluetoothService.exe
e SHA-256:
3bdc4c0637591533f1d4198a72a33426c01f69bd2e15ceee547866f65e26b7ad

Le script d'installation est chargé de créer un nouveau répertoire « Bluetooth » dans /e
dossier « %sAppData % », de copier les fichiers restants la-bas, de changer I'attribut du
répertoire en HIDDEN et d'exécuter BluetoothService.exe .

Chargement latéral DLL

Peu apres l'exécution de BluetoothService.exe , qui est en réalité un véritable
assistant de soumission Bitdefender renommeé et abusé pourle sideloading de DLL , un

Log.dLL malveillant était placé a cété de I'exécutable, ce qui le faisait charger au lieu de
la bibliotheque légitime. Deux fonctions exportées depuis Log.dLL sont appelées par

L’assistant de soumission Bitdefender . LogInit et LogWrite . m

Loglnit et LogWrite - chargement, déchiffrement, @
exécution du shellcode

LogInit charge BluetoothService dans la mémoire du processus en cours.

https://www.rapid7.com/

RAPIDY)

La routine de dechitrrement implemente un mecanisme de dechitrrement personnalise a
I'exécution utilisé pour décompresser les données chiffrées en mémoire. Il tire le matériel
clé a partir de la valeur de hachage précédemment calculée et applique un algorithme de
type chiffrement en flux plutdt que des API cryptographiques standard. A un niveau
géneéral, la routine de déchiffrement repose sur un générateur linéaire congruentiel, avec
les constantes standard ex1966eD et @x3C6EF35F , combinées a plusieurs étapes
basiques de transformation des données pour récupérer la charge utile du texte clair.

Une fois déchiffré, la charge utile remplace le tampon d'origine et toute la mémoire
temporaire est libérée. L'exécution est ensuite transférée a cette nouvelle étape
déchiffrée, qui est traitée comme du code exécutable et invoquée avec un ensemble
prédéfini d'arguments, incluant le contexte d'exécution et les informations d’API résolues.

pOldProtection = PAGE_EXECUTE_READWRITE;

VirtualProtect = (void (__stdcall *)(char *, int, MACRO_PAGE, MACRO_PAGE *))MWF_APIHashing(HANDLEKernel32, @x47C284CA);
virtualProtect(Shellcode, @x208088, PAGE_EXECUTE_READWRITE, &pOldProtection);
MWF_DecryptWrap((int)&savedregs);

Argumentlist[@] = @x116A7;

Argumentlist[1] = 5;

Argumentlist[19] = B8x2C508;

Argumentlist[18] = Bx31088;

Argumentlist[16] = Bx400008;

ArgumentList[17] = @;

Argumentlist[2] = @x1eee;

Argumentlist[9] = 8x23008;

Argumentlist[3] = 8x24008;

Argumentlist[1@] = Bx3E@0;

Argumentlist[4] = ex2Deee;

Argumentlist[11] = exCea;

Argumentlist[5] = 8x30008;

Argumentlist[12] = 8x2e;

Argumentlist[6] = @x310600;

Argumentlist[13] = exlCee;

ArgumentList[7] = @;

ArgumentlList[14] = @;

ArgumentList[8] = @;

Argumentlist[15] = @;

Argumentlist[28] = Shellcode;

Argumentlist[22] = MWF_J_GetPrecAddress;

Argumentlist[21] = MWF_J_LoadlLibraryA;

return ((int (__cdecl *)(_DWORD *))Shellcode)(Argumentlist);

}
Figure 3 : Composants internes de LogWrite

Résolution IAT

Log.d11l implémente une sous-routine de hachage d’API pour résoudre les APl requises
lors de I'exécution, réduisant ainsi la probabilité d'étre détecté par des antivirus et
d'autres solutions de sécurité.

m
@

hachage fnv-1a 0x811C9DCS5, le premier fnv-1a 0x1000193 observé), puis appliquera un

Sous-programme de hachage API

L'algorithme de hachage va hacher les noms d'exportation en utilisant FNv-1a (le

finalizateur d'avalanche de type MurmurHash (constante de murmur OXx85EBCAGB
observée), et comparera le résultat a un hachage cible salé.

https://www.rapid7.com/

RAPIDY)

Analyse de la porte dérobée de la
Chrysalide

Le shellcode, une fois déchiffré par Log.dLL , est une porte dérobée personnalisée et
riche en fonctionnalités que nous avons nommeée « Chrysalis ». Sa large gamme de
capacités indique qu'il s'agit d'un outil sophistiqué et permanent, et non d'un simple
utilitaire jetable. Il utilise des binaires légitimes pour installer une DLL congue sous un
nom générique, ce qui rend la détection simple basée sur le nom de fichier peu fiable. II
repose sur un hachage API personnalisé a la fois dans le chargeur et dans le module
principal, chacun avec sa propre logique de résolution. Cela est associé a une
obscurcation en couches et a une approche assez structurée de la communication C2.
Dans I'ensemble, I'échantillon semble avoir été développé activement au fil du temps, et
nous garderons un ceil sur cette famille ainsi que sur les futures variantes qui
apparaitront.

Déchiffrement du module principal

Une fois I'exécution passée au shellcode dechiffré depuis Log.dLL , /e malware
commence par le déchiffrement du module principal via une simple combinaison de XOR,
d'opérations d'addition et de soustraction, avec une clé codée en dur gQ2JR&9 ; . Voir ci-
dessous la routine pseudocode du déchiffrement :

char XORKey[8] = "gQ2JR&9;";
DWORD counter = 0;
DWORD pos = BufferPosition;

while (counter < size) {
BYTE k = XORKey[counter & 7];
BYTE x = encrypted[pos];

X = X + k;

X =X ™ k;
@

x - k;

bes
1

decrypted[pos] = x;

https://www.rapid7.com/

RAPIDY)

L'opération XOR est effectuée 5 fois au total, suggérant une disposition de section
similaire au format PE. Aprées le déchiffrement, le malware passera a une nouvelle
résolution dynamique IAT en utilisant LoadLibraryA pour acqueérir un handle a

Kernel32.d1ll et GetProcAddress . Une fois les exportations résolues, le saut est effectué

vers le module principal.

Module principal

Le module déchiffré est un module réfléchissant de type PE qui exécute la séquence
d'initialisation du cRT MSVC avant de transférer le contréle au point d'entrée principal du
programme. Une fois dans la fonction principale, le malware charge dynamiquement les
DLL dans l'ordre suivant : oleaut32.d1l, advapi32.dll, shlwapi.dll, user32.dll,
wininet.dll , ole32.d1ll et shell32.dll.

Les noms des DLL ciblées sont construits en cours de route, a l'aide de deux sous-
programmes distincts. Ces deux sous-programmes implémentent un schéma
d'obfuscation de caractéres personnalisé dépendant de la position. Chaque caractéere est
transformé a l'aide d'une combinaison de rotations de bits, d'opérations XOR
conditionnelles et d'arithmétique basée sur l'index, garantissant que des caractéres
identiques s'encryptent différemment selon leur position. La seconde routine inverse ce
processus a l'exeécution, reconstruisant la chaine de texte en clair originale juste avant
son utilisation. Le but de ces deux fonctions n'est pas seulement de dissimuler les
chaines, mais aussi de compliquer intentionnellement I'analyse statique et de nuire a la
détection basée sur la signature.

Apreés la reconstruction du nom DLL, le module principal implémente une autre routine de
hachage API, plus sophistiquée.

Sous-programme de hachage API

https://www.rapid7.com/

RAPIDJ)
Input: API Hash

Walk PEB (Process Env Block)
InMemoryOrderModuleList
(Loaded DLLs)

Skip Main Executable
Farse Export Table
(per module)

Hash APl Mame
= 4-byte blocks
= Rotations & multipliers

* Murmur-style finalization

Compare with input
hash

No Match Found
Are there exports
left to hash?

Match Found
Return APl Address

Fallpack Resolution

https://www.rapid7.com/

RAPIDY)

Figure 4 : Diagramme de hachage de I'API

La premiere différence entre cela et la routine de hachage de I'API utilisée par le chargeur
est que cette sous-routine n‘accepte qu'un seul argument : le hachage de I'API cible. Pour
obtenir le handle DLL, le malware parcourt le PEB jusqu'a 1°’InMemoryOrderModulelist ,
puis analyse la table d'exportation de chaque module, en sautant I'exécutable principal,
jusqu'a ce qu'il résolve I'API souhaitée. Au lieu de s'appuyer sur des algorithmes de
hachage courants, la routine utilise un mélange arithmétique a plusieurs étapes avec des
constantes de finalisation a la MurmurHash . Les noms d'API| sont traités en blocs de 4
octets a l'aide de plusieurs étapes de rotation et de multiplication, suivies d'une phase
finale de diffusion avant la comparaison avec le hachage fourni. Cette conception
complique considérablement la récupération statique des API résolues et réduit
I'efficacité de la détection traditionnelle basée sur la signature. En plan B, le résolveur
prend en charge la résolution directe via GetProcAddress sile hachage cible n'est pas
détecté via la méthode de hachage. Le pointeur vers GetProcAddress est obtenu plus tot
lors de la phase de « préparation du module principal ».

while (wa[v3]);
if (w9 »>= 8x18)

{
vle = 8x2D18317;
25 = Bxb4998966;
v29 = BxDEADBEEF;
w1l = BxdB76e453E;
do
1
a

H

ROL4_ (Bx9E3779B1 * vl
ROL4 (@x9E3779B1 * v
H

ROL4 (BxOE3779B1 * v20 - @x3B5C4B9 * (char)v27[v7 + 2], 13);
char)v27[v7 + 3];

- Bx3B5C4B9 * (char)vB[v7
- Bx3B5C489 * (char)va[v7 + 1], 13);

nmonon
g

[

ca &

&

[]
o

w7 ;
w1l __ROL4 (Bx9E3779B1 * w1l - @x3BS5C4B9 * w12, 13);
while (vO »= 4);

w13 = _ROL4 (v1@, 1) + _ROL4 (v28, 7) + _ ROL4 (v29, 12) + _ ROR4 (v1l, 14);
WS = v26;

vld = Bx34246083 - Bx61CBB64F * v13;

}
else
{
LABEL_9:
wild = -184277344;
}
For (i =7 + vi4; v7 < v9; i = @x9E377IBL * _ ROL4_ (i + @x165667B1 * v16, 11))
v16 = (char)uB[v7++]; @

if (((-1828477379 * ((@xB5EBCATZ * (i ~ (i »> 15))) ~ ((@xBSEBCATZ * (i ~ (i »>> 15))) 3> 13)))
A ((-1828477379 * ((@x85EBCATZ * (i ~ (i »» 15))) ~ ((@xBSEBCATZ * (1 ~ (1 »» 15))) »» 13})) »» 16)) == a2
&% (unsigned int)*{unsigned __ intl6 *)(v24 + 2 * v5) < *(_DWORD *)(this[3] + 20))
{ ®

break;

Figure 5 : Hachage interne de I'API

Déchiffrement de configuration

https://www.rapid7.com/

RAPIDY)

de la taille de 0x980. L'algorithme pour le déchiffrement est rca avec la clé
qwhvb”435h&*7 . Cela a révélé les informations suivantes :

e URL de Command and Control (C2) :
https://api.skycloudcenter.com/a/chat/s/70521ddf-a2ef-4adf-9cf0-6d8e24aaa821

e Nom du module : BluetoothService

e Agent utilisateur : Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64)
AppleWebKit/537.36 (KHTML, comme Gecko) Chrome/80.0.4044.92 Safari/537.36

La structure URL du C2 est intéressante, en particulier la section /a/chat/s/{GUID}), qui
semble étre le méme format utilisé par les points de terminaison de chat API Deepseek.
On dirait que l'acteur imite la circulation pour rester discret.

La configuration déchiffrée ne donne pas beaucoup d'informations utiles a partle C2. Le
nom du module est trop générique et I'agent utilisateur appartient au navigateur Google
Chrome. L'URL se résout a 61.4.102.97 , adresse IP basée en Malaisie . Au moment de
la rédaction de ce blog, aucun autre fichier n'a été vu communiquant avec cette IP et
cette URL.

Persistance et arguments en lighe de commande

Pour déterminer la prochaine étape a suivre, le malware vérifie les arguments en ligne de
commande mis en évidence dans le tableau 1 et choisit I'un des quatre chemins
possibles. Sile nombre darguments en ligne de commande dépasse deux, le processus
se termine. S'il n'y a pas d'argument supplémentaire, la persistance est principalement
mise en place via la création de services ou le registre comme mécanisme de secours.

Voir |le tableau 2 ci-dessous :

Argument Mode Action

(Aucun) Installation Installe la persistance (Service ou Registre) pointant
vers le binaire avec le drapeau -i , puis se termine.

-I Lanceur Génére une nouvelle instance d'elle-méme avec le
drapeau -k via shellExecuteA , puis se termine. ®
i
-K Charge Saute les veérifications d'installation et exécute la @

utile logique malveillante principale (C2 et Shellcode).

https://www.rapid7.com/

RAPIDY)

Collecte d'informations et communication C2

Un mutex Global\\Jdhfv_1.0.1 est enregistré pour imposer I'exécution d'une instance
unique sur I'hote. S'il existe déja, le malware est éliminé. Si la vérification est correcte, la
collecte d'informations commence par la recherche des informations suivantes : heure
actuelle, antivirus installés, version du systeme d’exploitation, nom d'utilisateur et nom de
I'ordinateur. Ensuite, le nom de I'ordinateur, le nom d'utilisateur, la version du systeme
d'exploitation et la chaine 1.e1 sont concaténés et les données sont hachées a l'aide

de FNV-1A . Cette valeur est ensuite transformée en sa représentation décimale ascii et
utilisée tres probablement comme identifiant unique de I'héte infecté.

Le tampon final utilise un point comme délimiteur et suit ce schéma :

<UniquelID>.<ComputerName>.<UserName>.<0SVersion>.<127.0.0.1>.<AVs>.<DateAnd’

< G >

La derniére information ajoutée au début du tampon est une chaine 4Q . Le tampon est
alors chiffré RC4 avec la clé vAuig34 %"325hGV .

Apres le chiffrement des données, le malware établit une connexion Internet en utilisant
I'agent utilisateur et le api.skycloudcenter.com C2 mentionnés précédemment via le port
443. Les données sont ensuite transférées via HttpSendRequestA en utilisant la méthode
POST . La réponse du serveur est ensuite lue dans un tampon temporaire qui est ensuite
déchiffré en utilisant la méme c1é vAuig34 %~325hGV .

Traitement des réponses et des commandes

Note : Le serveur C2 était déja hors ligne lors de I'analyse initiale, empéchant la
récupération de toute donnée réseau. En conséquence, et en raison de la complexité d. al
malware, certaines parties de lI'analyse suivante peuvent contenir de Iégéres
inexactitudes. @

La réponse du C2 subit plusieurs vérifications avant un traitement supplémentaire.
D'abord, le code de réponse HTTP est comparé a la valeur codée en dur 200 (0xC8),

https://www.rapid7.com/

RAPIDY)

utile recue et I'exécution ne se poursuit que si au moins une structure valide est détectée.

Ensuite, le malware examine les données de réponse d'un petit tag pour déterminer quoi

faire ensuite. Tag est utilisé comme condition pour une instruction switch avec 16 cas

possibles. Le cas par défaut va simplement configurer un drapeau pour TRUE . Configurer

ce drapeau entrainera un saut complet hors de l'interrupteur. D'autres boitiers

d'interrupteurs incluent les options suivantes :

Représentation des Représentation Objectif
chars hexagonale
4T 0x3454 Coque interactive de spawn
4U 0x3455 Envoyez 'OK'a C2
4V 0x3456 Processus de création
4W 0x3457 Ecrire le fichier sur disque
4X 0x3458 Ecrire un morceau dans un
fichier ouvert
4Y 0x3459 Lecture et envoi des données
47 Ox345A Rupture avec l'interrupteur
4\\ 0x345C Désinstaller / Nettoyer
4] 0x345D Dors
4_ Ox345F Obtenez des informations sur
les disques logiques
4' 0x3460 Enumérer les informations des
fichiers
4A 0x3661 Supprimer fichier @
4b 0x3662 Créer un répertoire é
4c 0x3463 Obtenir un fichier depuis C2
4d 0x3464 Envoyer le fichier vers C2

https://www.rapid7.com/

RAPIDY)

4T - Le malware implémente un shell cmd.exe inverse entiérement interactif en
utilisant des pipes redirigées. Les commandes entrantes du C2 sont converties de 1°uTF-
8 versla page de code OEM du systeme avant d'étre écrites en entrée standard du

shell, tandis qu'un thread dédié lit en continu la sortie du shell, la convertit de I'encodage
OEM vers I'UTF-8 via 1°API GetOEMCP , puis renvoie le résultat vers le C2.

4v - Cette option permet I'exécution a distance de processus en invoquant
CreateProcessW Sur une ligne de commande fournie par C2 et en relayant I'état
d'exécution vers le C2.

4w - Cette option implémente une capacité d'écriture de fichiers a distance, analysant
une réponse structurée contenant un chemin de destination et le contenu du fichier,
convertissant les codages si nécessaire, écrivant les données sur le disque , et
renvoyant un message d’état formaté au serveur de commande et contrble.

4x - Similaire au commutateur précédent, il supporte une capacité d'écriture de fichiers
a distance, permettant au C2 de déposer des fichiers arbitraires sur le systéme victime
en fournissant un nom de fichier UTF-8 et un blob de données associé .

4y - Switch implémente une capacité de lecture de fichiers a distance. Il ouvre un fichier
spécifie, en récupeére la taille, lit I'intégralité du contenu en mémoire, puis transmet les

données au C2 .

4\\ - L'option met en place un mécanisme complet d’auto-retraite . Il supprime les
fichiers auxiliaires de charge utile, supprime les artefacts de persistance a la fois de la
ruche du registre de service Windows et de la clé Exécution , génére et exécute un
fichier batch temporaire u.bat de supprimer |'exécutable en cours d'exécution apres la
terminaison, et enfin supprime le script batch lui-méme.

4_ -Ici, le malware énumere les informations sur les pilotes logiques a l'aide des API
GetLogicalDriveStringsA et GetDriveTypeA et renvoie ces informations au C2.

4' - Cette option de commutateur partage des similitudes avec la fonction d'exfiltration
de données précédemment analysée - 4y . Cependant, son objectif principal differe. Au
lieu de transmettre des données préexistantes, il énumére les fichiers dans un

répertoire spécifié, collecte les métadonnées par fichier (horodatages, taille et nom m
fichier), sérialise les résultats dans un format tampon personnalisé, et envoie la liste
agrégée au C2. @

4a - 4b - 4c - 4d - Inthe last 4 cases, malware implements a custom file transfer
protocol over its C2 channel. Commands 4a and 4b act as control messages used to
initialize file download and upload operations respectively, including file paths, offsets,

https://www.rapid7.com/

RAPIDY)

size 40-byte response structure, validated for successful HTTP status and correct
structure count before processing. Transfers continue until the C2 signals completion via
a non-zero termination flag, at which point file handles and buffers are released.

Additional artifacts discovered on the infected host

During the initial forensics analysis of the affected asset, Rapid7's MDR team observed
execution of following command:

C:\ProgramData\USOShared\svchost.exe-nostdlib -run
C:\ProgramData\USOShared\conf.c

The retrieved folder “USOShared”from the infected asset didn't contain svchost.exe but it
contained “libtcc.dll” and “conf.c”. The hash of the binary didn't match any known
legitimate version but the command line arguments and associated “/ibtcc.dll” suggested
that svchost.exe is in fact renamed Tiny-C-Compiler. To confirm this, we replicated the
steps of the attacker successfully loaded shellcode from “conf.c”into the memory of

“tcc.exe”, confirming our previous hypothesis.

Analysis of conf.c

The C source file contains a fixed size (836) char buffer containing shellcode bytes which
is later casted to a function pointer and invoked. The shellcode is consistent with 32-bit
version of Metasploit's block API.

The shellcode loads Wwininet.d1l using LoadLibraryA , resolves Internet-related APls
such as InternetConnectA and HttpSendRequestA , and downloads a file from
api.wiresguard.com/users/admin . The file is read into a newly allocated buffer, and
execution is then transferred to the start of the 2000-byte second-stage shellcode.

m
@

https://github.com/phoenixthrush/Tiny-C-Compiler
https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block_api.asm
https://www.rapid7.com/

_,
1
1
I
1
. . E N E N N NN NENBENHNHJNEN.]

K

0ZEZ0D00%9
DZEZ2000C
DZEZOOOF
02E20012
0ZE20015
0ZE20017
DZEZ00L1E
OZEZDOL1E
0ZE2001D
0ZE20020
Q2ZE20022
OZE20025
02E20028
0ZE2002A
0ZE2002C
DZEZ00ZE
OZEZ0030
02E20031
0ZE20033

RAPIDY)

BB45
83C5
EE4D
83C5
F1C1
L&
BBEE
F1CZ
8955
100
83C5
BZE9
2902
3901
74 02
EE E&
58
FFED
E8 CFFFFFFF

oo

oo

04
04

mow
add
mow

eax, dword
ebp, 4
ecx, dword
add ebp,4

XOr ecx,eax
push ebp

mov edx, dword
xor edx,eax
mov dword ptr
®or eax,edx
add ebp,4

sub ecx,4

sub edx,edx
cmp ecx,edx
je ZE20030
jmp ZEZ0DO018
pop eax

jmp eax

call zeEzo007

Figure 6: Shellcode decryption stub

ptr

ptr =s:jlebpl

ptr ss:[Qebpl
ss:febpll, edx

.
55.

p=opy

This stub is responsible for decrypting the next payload layer and transferring execution
toit. It uses a rolling XOR-based decryption loop before jumping directly to the

decrypted code.

A quick look into the decrypted buffer revealed an interesting blob with a repeated string

CRAZY , hinting at an additional XORed layer, later confirmed by a quick test.

UZELEBHU
D2E2EB90
D2EZEBAD
D2EZ2EBBD
DZ2EZEBCOD
OZ2EZEBDOD
DZ2EZEBED
02EZEBFD
D2E2ED00
D2EZE910
02EZED20
0Z2EZES30
DZ2EZES40
DZ2EZES50
02EZ2ES60D
D2E2ES70D
D2EZES80
02EZ2ES90
OZ2EZEDAD
DZ2EZESBD
DZ2EZESCD
D2E2ESD0D
D2EZ2ESED
D2EZ2ESFD
OZ2EZEADD
OZ2EZEALD
DZ2EZEAZD
O2EZEAZD
02EZ2EA40D
D2EZEASD
02EZ2EAGD
DZ2EZEATFD
OZ2EZEABD
OZ2EZEASD
02EZ2EAAD

UHEBLYSUP] IELKWU.A
¥ [XBwAYBIRqODAD
AZU.p=xi.BT[8n..(
0¥<..°) (~Z.8aR0O
AR.k:A.@.usS=¢Yaz
LY. owhcA. ... a.
&.3Ix92D.z3i£eh,
UrAzF ' pO.y...08.k
."l1el!c=péld.a.u
reghoHacARrw. &7 .
. KCYXCSAZYCRAZYC
RAZYCRAZYCRAZYCR
AZYCRAZYCRAZYCRA
ZYCRAZYCRAZYCRAZ
YCRAZYCRAZYCRAZY
CRAZYCRAZYCRAZYC
RAZYCRIZZBR *Om¥
((=<054;+"|"S407}
*01"'1=877n, hCRAZ
YCRAZ YCRAZ YCRAZY
CRAZYCRAZYCRAZYC
RAZYCRAZYCRAZYCR
AZYCRAZYCRAZYCRA
ZYCRAZYCRAZYCRAZ
YCRAZYCRAZYCRA™
crRAZvCRAZYCRAZ D
RAZYCRAZYCRAZYCK
AZYCRAZYCRAZY(C"
zvcrazverazve @)
YCRAZYCRAZYCRA
CRAZYCRAZYCRAZYC
RAZYCRAZYCRAZYCR
AZYCRAZYCRAZ . CS5A
XYCR.Z[CVeE¥ ' %R.Z
[CVEY MR . Z [CVEY !

https://www.rapid7.com/

Recipe

From Hex

Delimiter

Auto

XOR

Key
CRAZY

UTF8 ~

|:| Null preserving

ama
& n
Q n
Scheme
Standard

1
sTep

Figure 8: Decrypted configuration

RAPIDY)

Input + O 0 =

43 53 41 5B 59 41 52 40 SA SB 43 53 41 58 58 F8 52 42 SA 5B 43 56 41 BA 17 83 52 45 5A
EE 43 56 41 4F @F 2B 52 44 5A GE 43 5@ 41 43 50 44 52 42 5B 59 73 D3 DE 6A 54 45 5B 6B
DC 11 C5 AS AC 5B 58 42 57 41 59 D8 CE 52 71 DE D@ 41 D3 C8& 5A FA 17 FE E6 Al ©C 38 54
CE 328 6E 06 1F 28 30 AS F7 60 B84 BO A6 28 7E 7E 5A 1C EB AB 52 D2 C2 F1 G5 BB 3A C4 81
4@ 9C 75 53 3E A2 50 E2 E6 @C 59 1E 8D 4F 57 D4 EV C3 81 9D 2A @C 1C E@ @D Fe 83 4A 78
39 AA 44 94 TA 33 EC A3 EB 68 2C 60 DC 5E 7A 46 B9 70 2@ 96 79 @B @8 1D D3 38 89 6B BS
B3 4A 36 D9 21 EV B2 70 EA CC D6 BE E@ 9A F9 3A AE 71 C1 BA A4 AA EV C4 BB 72 77 18 26
37 85 98 4B 43 52 58 43 53 41 5A 59 43 52 41 5A 59 43 52 41 5A 5% 43 52 41 5A 59 43 52
41 5A 59 43 52 41 5A 52 43 52 41 SA 59 43 52 41 5A 5% 43 52 41 5A 59 43 52 41 5A 5% 43
52 41 5A 59 43 52 41 5A 59 43 52 41 S5A 59 43 52 41 SA 59 43 52 41 SA 59 43 52 41 5A 59
43 52 41 5A 59 43 52 41 5A 59 43 52 41 5A 59 43 52 49 SA SA 42 52 26 24 3@ 6D 25 28 28
3C 3@ 35 34 3B 2B 27 7C 22 35 34 6F 7D 2@ 24 3@ 6C 27 31 3E 38 37 37 6E 2C 68 43 52 41

CA CO A3 C7 A1 CA CN A2 CY A1 CA CO AT C9 A4 CA CN A3 C73 A4 CA CN AT CI A1 CA LA A2 LI

ac 12287 = 1 Tr Raw Bytes &= L

Output A0 m:os:

huetssmnutzammuLzre 2= socsmenzsmuisTesst ezl uuzomisesczomiersV v somu smives 2 v essuersorn 8 0
sezansscuuizres oo o sme on ET-§0A scescb7EMIF U "RAGYK, 240 E " locse 0 2C* ™ #BacaV/
Lo XPxMFANRAo | 20 I#PHE2 1020 corfenaB 11 1 YIG [0%88 de[MA"we o T20EciH278pe

T ETX50HNULSOH NUL NUL NUL VUL NUL NUL NUL NULNUL NUL WUL NUL NUL NUL WUL WUL KUL NUL UL NUL RUL KUL UL NUL NUL WUL NUL UL NUL NUL NUL NUL NUL NUL NUL UL NUL RUL

MULRULNULKULNUL MULNUL NULNULRULNULNULRULRULNULNULNULRUL RULNULNULNULNUL RULNUL RULNULNULNULNUL UL RULRUL UL KU LNUL RULNULRULNULNUL RULNUL UL NULKUL UL RULNUL

MULNULNULNULNULMULNULNUL B3 '-I.LET.“S:H'.Ll.Iapi. wir‘esguar‘d - Com, .l'fapiifUpdatEK\flILL:LL"LL-LL'-I.L-I.I.'-I.L'.I.I.'-LL"LL'-LL'-LL'-LL'-LL-I.L'-I.L'.I.I.

MULALLRUL AULRUL NULNUL NULRUL RUL KUL RUL RULNUL RULNULRUL RULRULNULRULRULNULALLRUL NULNUL NULRUL UL RULRUL RUL RUL RULNUL RULNULAULRULRULNULNULALLRULRULRULRULNLL
MULALLRUL AULRUL NULNUL NULRUL RUL KUL RUL RULNUL RULNULRUL RULRULNULRULRULNULALLRUL NULNUL NULRUL UL RULRUL RUL RUL RULNUL RULNULAULRULRULNULNULALLRULRULRULRULNLL
MULALLRUL AULRUL NULNUL NULRUL RUL KUL RUL RULNUL RULNULRUL RULRULNULRULRULNULALLRUL NULNUL NULRUL UL RULRUL RUL RUL RULNUL RULNULAULRULRULNULNULALLRULRULRULRULNLL
MULALLRUL AULRUL NULNUL NULRUL RUL KUL RUL RULNUL RULNULRUL RULRULNULRULRULNULALLRUL NULNUL NULRUL UL RULRUL RUL RUL RULNUL RULNULAULRULRULNULNULALLRULRULRULRULNLL
LhutDwuesranuceor VY Y su EnvustenuesotV ¥ Ve Fussmasuceor YV Y suLso suLemsuLaesussuL
NULNULNULNULNULULNUL NULNULRULNULNULRULNULALL €5 N 1-.-.IL@%1-\|1ndir‘%\syswo1-164\gpupdate « £ UL KUL KULNUL KUL VUL SUL KUL UL UL KUL UL

suLAULRULRULRLLRULRLULRULRULRULRULC UL saknL

s ¥ m AT ¥ e A At Tunal anndata Aavea

Parsing of the decrypted configuration data confirms that retrieved shellcode is Cobalt

Strike (CS) HTTPS beacon with http-get api.wiresguard.com/update/vl and http-post

api.wiresguard.com/api/FileUpload/submit urls.

Analysis of the initial evidence revealed a consistent execution chain: a loader embedding

Metasploit block_api shellcode that downloads a Cobalt Strike beacon . The unique

decryption stub and configuration XOR key CRAzy allowed us to pivot into an external

hunt, uncovering additional loader variants.

https://www.rapid7.com/

RAPIDY)

;(i%}
A
Download encrypted
beacon
Decrypt &se;éelli:cuéseembedded v Decrypt & execuie beacon C&C comms
o— 10}
ED > S SERE
Metasploit Cobalt Strike

Loader C&C server

block_api beacon

Figure 9: Execution flow followed by conf.c and other loaders

Variation of loaders and shellcode

In the last year, four similar files were uploaded to public repositories.

Loader 1:
SHA-256: 0a9b8df968df41920b6ff07785chfebe8bda29e6b512c94a3b2a83d10014d2fd

Shellcode SHA-256:
4c2ea8193f4a5db63b897a2d3ce127cc5d89687f380097a1d91e0c8db542e4f8

User Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 1015_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/92.0.4472.114 Safari/537.36

URL hosting CS beacon: http://59[.]110.7.32:8880/uffhxpSy
CS http-get URL: http://59[.]110.7.32:8880/api/getBasicinfo/v1

CS http-post URL: http://59[.]1110.7.32:8880/api/Metadata/submit

Loader 2:

SHA-256: m
e7¢cd605568c38bd6e0aba31045e1633205d0598c607a855e2e1bcadccalcbeda @

Shellcode SHA-256:
078a9e5c6¢787e5532a7e728720cbafee9021bfec4a30e3¢c2be110748d7¢c43c5

https://www.rapid7.com/

RAPIDY)

URL hosting CS beacon: http://124[.]1222.137.114:9999/3yZR31VK
CS http-get URL: http://124[.1222.137.114:9999/api/updateStatus/v1

CS http-post URL: http://124[.]1222.137.114:9999/api/Info/submit

Loader 3:
SHA-256: b4169a831292e245ebdffedd5820584d73b129411546e7d3eccf4663d5fc5be3

Shellcode SHA-256:
7add554a98d3a99b319f2127688356¢1283ed073a084805f14e33b4f6a6126fd

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/134.0.0.0 Safari/537.36

URL hosting CS beacon: https://api[.]wiresguard[.Jcom/users/system
CS http-get URL: https://api[.]wiresguard[.]Jcom/api/getinfo/v1

CS http-post URL: https://api[.]wiresguard[.]Jcom/api/Info/submit

Loader 4:

SHA-256: fcc2765305bcd213b7558025b2039df2265c3e0b6401e4833123c461df2de51a

Shellcode SHA-256:
7add554a98d3a99b319f2127688356¢1283ed073a084805f14e33b4f6a6126fd

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/134.0.0.0 Safari/537.36

URL hosting CS beacon: https://api[.]wiresguard[.Jcom/users/system
CS http-get URL: https://api[.]wiresguard[.]Jcom/api/getinfo/v1

CS http-post URL: https://api[.]wiresguard[.]Jcom/api/Info/submit

M

shellcode encryption technique, execution ,and almost identical C2 to beacon th?’®

From all the loaders we analyzed, Loader 3 piqued our interest for three reasons -

was found on the infected asset. All the previous samples used a pretty common
technique to execute the shellcode - decrypt embedded shellcode in user space, change
the protection of memory region to executable state, and invoke decrypted code via

https://www.rapid7.com/

RAPIDY)

Analysis of Loader 3 - ConsoleApplication2.exe

At the first glance, the logic of the sample is straightforward: Load the DLL clipc.dl1l
overwrite first 0x490 bytes, change the protection to PAGE_EXECUTE_READ (0x20), and
then invoke NtQuerySystemInformation . Two interesting notes to highlight here - bytes

copied into the memory region of clipc.dll are not valid shellcode and
NtquerySystemInformation is used to “Retrieve the specified system information”, not to

execute code.

clipc = LeadLibrarya("clipc.d11™);
if (!clipc)
return 1;

VirtualProtect(clipc, ©x498u, PAGE READWRITE, &f10ldProtect);
v2@ = (__intl28 *)v2o;

do

1
clipc += 8x28;

p @x2e

v21l = *v28;
w22 = v28[1];
v2@ += 8;
*((_OWORD *)clipc - 8) = v21;
w23 = *{v28 - B6);
*((_OWORD *)clipc - 7) = wv22;
w24 = *{v2@ - 5);
*((_OWORD *)clipc - B) = v23;
w25 = *{v2a - 4);
*((_OWORD *)clipc - 5) = wv24;
Vw26 = *{v2@ - 3);
*((_OWORD *)clipc - 4) = v25;
v27 = *¥{v2e —_2);
*((_OWORD *)clipc - 3) = v26;
w28 = *{v2e - 1);
*((_OWORD *)clipc - 2) = v27;
*((_OWORD *)clipc - 1) = v23;
--counterl;

}

while (counterl };
*(OWORD *)clipc = *v28;

I
VirtualProtect(clipc, ©x498u, PAGE_EXECUTE_READ, &f10ldProtect);

vid = 8;

w32 = &v34;
SystemInformation = 3;
v3l = clipc;

return NtQuerySystemInformation(SystemExtendedProcessInformation|@x8@, &SystemInformation, @x1Bu, @);

Figure 10: Snippet from ConsoleApplication2.exe

Looking into the copied data reveals two “magic numbers"” DEADBEEF and CAFEAFE , but s
nothing else. However, the execution of shellcode is somehow successful, so what's
going on?

https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://www.rapid7.com/

QUUUUUSBESCURFZES | AU U3 UL UL

RAPIDY)

o 3 2
0000003R9C0OFF2F8 [FE_AF_FE CA|EF BE AD DE|O7 00 00 00(27 00 R]| It
0000003R9COFF308 | F6 U0 U0 UD[ES U0 00 U0|15 00 00 00(15 00 TR T | | R TR R T T Te T
0000003B9COFF318| AD 00 00 00(1D 00 00 00|04 00 00 00|94 0O TR Tt | R R TR R T TR
0000003R9COFF328|DD 00 00 00|C4 00 00 00|18 00 00 00(19 00 T IR T | | R TR T TR T T T AT
0000003B9COFF338| 39 00 00 00|31 00 00 00|11 00 00 0C|AD 0O aCOFF2F8 || DEADBEEFCAFEAFFE
0000003R9COFF348|BS 00 00 00|58 00 00 00|17 00 00 00(97 0O 0000003BSCOEF300 | 00000027 00000007
0000003RICOFFISE| 32 00 00 00(19 00 00 00|16 00 00 00(D1 0O TR T | R TR T T PR T T TR
0000003BICOFF368|CO 00 00 00|FD 00 00 00|08 00 00 00|8E 0O =c TR T | | R T T TR T T T
0000003BICOFF378| 4E 00 00 00|48 00 00 00|12 00 00 00|OB 0O =c 0000003B3COFF218 || C000DD1DC0C000AD
0000003B9COFF3BE| F5 00 00 00|38 00 00 00|01 00 00 00|A8 0O =c TR T | | F TR T Tt
0000003BICOFF398| 63 00 00 00|50 00 00 00|CE 60 7A E2[5A 97 cc 0000003B9C0OEF328 || 0000DOC4000000DD
0000003RICOFF3AB|59 7A EC 1E(0A 9D 79 92|A4 49 0D 4A[C8 45 65 19|vzi. 0000003BSCOEF220 || 0000001900000018
0000003BICOFF3BE| 69 49 FB 52|84 92 30 F6|76 79 78 65 (F6 15 95 FE 1;uR TR T | R TR TR T T T TR
0000003B9COFFICE|ES FB 8C 82|00 6C 20 E4|38 5C 97 85 (0B E4 BE Bi|ad. TR T | | R TR T T T TeeL
0000D03BSCOFF3DS | 5F DF D3 5B(7D E1 57 CD|C3 49 E9 68|CO 6D 16 AB|_BO 0000003BSCOEE248 || COODDOS 800C000BE
0000003R9COFF3ES| 5B 9D 73 66|30 84 B6 DD|91 48 46 1F (6A 72 22 1F|[.s TR T | | R TR TR T T T
0000003R9COFF3FE| 36 51 13 58|97 DE 5D 26|52 EB 34 DI|C2 FA D4 2E|6Q.X TR | R T TR T T TR
0000003B9COFF408|D9 C4 D6 ED|(9E 16 FB 21|4D 5A 92 10(01 73 CD 57| UAD 0000002850 OFF2 20 || DDODDOD10000D01E
0000003BICOFF418 |50 F8 33 2E|05 C4 F7 22|62 62 F6 G8(B7 F8 D3 CF|]@3..A=" TR EeHEL SO DOGTa]
DD0DD03BSCOFF428| 20 3C 00 58|57 59 03 A9|89 BE Al 63|51 21 B3 61| <, [WY.8.%jcqia R EeHEL SO E DGO 0T0E
0000003B9COFF438| 93 08 EE 2F|E7 D6 86 C7|C3 43 C2 8D (78 C6 13 C5|..1,/¢0.CACA.XA.A P r R T TR T
DDDDDD3BSCOFF448| 69 7B 24 53|ES BA 24 E8[88 4F FA 37|22 C5 66 C4|1{$Ya°$e.007"ATA G RGHEL 7ot | G000 D EGC OO DTS
0000003BICOFF45E| 32 C6 2C 2B|CL A5 95 D2|7E 85 85 66(B1 2D DF 94|24, +A¥.0~.. reE. R RoG L 7 aa | G000 DB GO0 EES
0000003B9COFF468| 01 AA F9 DO|BA CB 36 13|6E A5 C2 DD|0C 13 23 16|.20D°EG. n¥AY RO RoGTEE et | lGoDo s soooacTa
D0DDD03BSCOFF478|CC BO C4 7A[10 1B 92 69|FD OB 58 OF |48 4A 11 AF|i:Az. .X.H G RoGHEE 58 | G000 ID: DGCOO0oES
D000DOIESCOFF458| E5 7A B1 €5 |E4 D1 B4 E5 |41 2A 78 BE|06 F6 F3 C1|ézsedR’ an xk.c 0000003E5COEE2AD || 5 8BA975AE27AGOCE
0000003B9COFF498 |54 6A 44 B1|3D 97 0B 44|A9 8B 3E G3(EB 90 94 47|TjDi=..DB.>CE..G T TR TR | FEECE T D
0000003RICOFF4AB|E1 D5 70 E1(58 S5E 4C 19|F1 86 FC 1D|0A 25 35 45 |aDpaxAL.h.d, . %5E S CHGHR RoGTEE T | B eciE Ga TR e
0000003B9COFF4BE| OE 49 E9 GE|1F 9C 65 21|DE E1 Bl E8(EE 4B 35 F4 Ien . elpazeikss D Roe L s [Fe e R rse R oS
0000003BICOFF4CE| 68 91 98 OE|C8 E7 5F 7B|16 BY F4 E0(54 C8 F5 CD .Ec_{,-0aTEdT RO RGEE SeH I [EESSa = secs Ernre
0000003BICOFF4DE| AC F3 9B B6|3A 7F EB 19|E2 67 99 4C (63 5A 3A FO —-u 5. 8. hg.Lcz: 0 R RoG L 158 o3 ZoEE G e e aG e A
0000003BICOFF4ER| 90 4E A3 C7 [EQ EO DD 5E|07 BA 2A B8B|FE 56 90 SE|.NECaavh.e+.pv.A O RGEE D IEIBEEA0RE S -Gt
0000003BICOFF4FE| 2C A7 34 23|0B 44 AD F2|88 8F 9D 39|04 E8 28 1A|,§4#.D b...9.&(. RO RGHEE 355 | Eu55 Ei7DSBDAn EST
0000003BICOFFS08| 82 B6 CO 74|F8 E7 7B AA|CB ED EO 46(A7 8F 71 2B]1At$5 aEibFs. or OO RGHEE e B3 e DL GeEE S ne
0000003RICOFFS1B| 6C AF 7E F3|2B D3 C3 36|B5 1B C5 73 (Bl 38 8E D9 6u. As=8. U NI ROGIELEs DD BEsa30Eesa o5 g
JLIITIERSIAEEAT|SE T2 02 21\ Ah BT D oen 65 3% E 3T R ZE 2f) ol &or. p#. pr ORI RGHEEHED IEZ2 72 eriE A Eaaaal
0000003BICOFFS38| A2 03 B7 BA|D4 2C 13 EA|88 BF DA 31(4E 96 90 76 .85, IN. NG ROGHEE e A |IZE son Enst ks
0000003RICOFFS48| 3F 1E 63 18|C7 5A F1 6E|A7 BF ED C5 (45 OE 04 19|7 CICZI"II"Igg_.'I._ﬂE 52 oo T0aESeDEETon | EEDSERGED S TIEESS

Figure 11: Data copied into clipc.dll

According to the official documentation, the first parameter of NtQuerySystemInformation
is of type SYSTEM_INFORMATION_CLASS which specifies the category of system information
to be queried. During static analysis in IDA Pro, this parameter was initially identified as
SystemExtendedProcessInformation|ex8e but looking for this value in MSDN and other
public references didn't provide any explanation on how the execution was achieved. But,
searching for the original value passed to the function (exB9) uncovered something
interesting. The following blog by DownWithUp covers Microsoft Warbird, which could be
described as an internal code protection and obfuscation framework. These resources

confirm IDA misinterpretation of the argument which should be
SystemCodeFlowTransition , @ necessary argument to invoke Warbird functionality.
Additionally, DownWithUp's blog post mentioned the possible operations:

https://downwithup.github.io/blog/post/2023/04/23/post9.html
https://cirosec.de/en/news/abusing-microsoft-warbird-for-shellcode-execution/
https://www.rapid7.com/

RAPIDY)

These are the operations:
WbDecryptEncryptionSegment
WbReEncryptEncryptionSegment

WbHeapExecuteCall

non symbol name function

non symbol name function.

same ds case 5
WbRemoveWarbirdProcess
WbProcessstartup

WbProcessModuleUnload

Figure 12: Warbird operations documented by DownWithUp

Referring to the snippet we saw from “ConsoleApplication2.exe”, the operation is equal to
WbHeapExecuteCall which gives us the answer on how the shellcode gained execution.
Thanks to work of other researchers, we also know that this technique only works if the
code resides inside of memory of Microsoft signed binary, thus revealing why clipc.d1ll
has been used. The blog post from cirosec also contains a link for their POC of this
technique which is almost the same replica of “ConsoleApplication2.exe”, hinting that
author of “ConsoleApplication2.exe” simply copied it and modified to execute

Metasploit block api Shellcode instead of the benign calc from POC. The comparison of
the Cobalt Strike beacon configuration delivered via “conf.c” and
“ConsoleApplication2.exe” revealed shared trades between these two, most notably

domain , public key , and process injection technique .

M

Attribution to Lotus Blossom ®

Attribution is primarily based on strong similarities between the initial loader observed in
this intrusion and previously published Symantec research. Particularly the use of a

https://github.com/cirosec/warbird-demos/blob/main/Loader/Loader.cpp
https://sed-cms.broadcom.com/system/files/threat-hunter-whitepaper/2025-04/2025_04_ChinaLinked_Espionage_Actors.pdf
https://www.rapid7.com/

RAPIDY)

In addition, similarities of the execution chain of “conf.c”retrieved from the infected asset
and other loaders that we found, supported by the same public key extracted from CS
beacons delivered through “conf.c”and “ConsoleApplication2.exe” suggests with
moderate confidence, that the threat actor behind this campaign is likely Lotus Blossom.

Conclusion

The discovery of the chrysalis backdoor and the warbird loader highlights an evolution
in Lotus Blossom's capabilities. While the group continues to rely on proven techniques
like DLL sideloading and service persistence, their multi-layered shellcode loader and
integration of undocumented system calls (NtQuerySysteminformation) mark a clear shift
toward more resilient and stealth tradecraft.

What stands out is the mix of tools: the deployment of custom malware (Chrysalis)
alongside commodity frameworks like Metasploit and Cobalt Strike, together with the
rapid adaptation of public research (specifically the abuse of Microsoft Warbird). This
demonstrates that Lotus Blossom is actively updating their playbook to stay ahead of
modern detection.

Rapid7 customers

InsightIDR and MDR

InsightIDR and Managed Detection and Response customers have existing detection
coverage through Rapid7's expansive library of detection rules. Suspicious Process -
Child of Notepad++ Updater (gup.exe) and Suspicious Process - Chrysalis Backdoor are
two examples of deployed detections that will alert on behavior related to Chrysalis.
Rapid7 will also continue to iterate detections as new variants emerge, giving customers
continuous protection without manual tuning.

s
Intelligence Hub
Customers using Rapid7's Intelligence Hub gain direct access to Chrysalis backdoor,

Metasploit loaders and Cobalt Strike 10Cs, including any future indicators as they are
identified.

https://www.rapid7.com/

RAPIDY)

Indicators or compromise (l1oCs)

File indicators

Note: data may appear cut-off or hidden due to the string lengths in column 2. You can
copy the full string by highlighting what is visible.

update.exe

a511be5164dc1122fb5a7daa3eef9467e43d8458425b15a64

[NSIS.nsi]

8ea8b83645fba6e23d48075a0d3fc73ad2ba515b4536710«

BluetoothService.exe

2da00de67720f5f13b17€9d985fe70f10f153da60c9ab1086f

BluetoothService

77bfea78def679aa1117f569a35e8fd1542df21f7e00e27f192

log.dll 3bdc4c0637591533f1d4198a72a33426c01f69bd2e15ceee!
u.bat 9276594e73cdalc69b7d265b3f08dc8fa84bf2d6599086b!
conf.c f4d829739f2d6ba7e3ede83dad428a0ced1a703ec582fc73
libtcc.dll 4a52570eeaf9d27722377865df312e295a7a23c3b6eb991¢
admin 831eleal3albd405f5bda2b9d8f2265f7b1db6c668dd2165¢
loader1 0a9b8df968df41920b6ff07785chfebe8bda29e6b512c94a:
uffhxpSy 4c2ea8193f4a5db63b897a2d3ce127cc5d89687f380b97al
loader2 €7c¢d605568c38bd6e0aba31045e1633205d0598c607a85¢
3yzr31vk 078a9e5c6¢787e5532a7e728720cbafee9021bfec4a30e3c

ConsoleApplication2.exe

b4169a831292e245ebdffedd5820584d73b129411546e7d3

system

7add554298d3a99b319f2127688356¢1283ed073a084805

s047t5g.exe

fcc2765305bcd213b7558025b2039df226503e0b6401e/'dj

Network indicators

@

95.179.213.0

https://www.rapid7.com/

RAPIDY)

api[.]Jwiresguard[.Jcom

61.4.102.97

59.110.7.32

124.222137.114

MITRE TTPs
ATT&CK ID Name
T1204.002 User Execution: Malicious File
T1036 Masquerading
11027 Obfuscated Files or Information
T1027.007 Obfuscated Files or Information: Dynamic APl Resolution
T140 Deobfuscate/Decode Files or Information
T1574.002 DLL Side-Loading
T1106 Native API
T1055 Process Injection
T1620 Reflective Code Loading
T1059.003 Command and Scripting Interpreter: Windows Command Shell
71083 File and Directory Discovery
T1005 Data from Local System
T1105 Ingress Tool Transfer
T1041 Exfiltration Over C2 Channel
T1071.001 Application Layer Protocol: Web Protocols (HTTP/HTTPS)
T1573 Encrypted Channel

https://www.rapid7.com/

RAPIDY)

T1543.003 Create or Modify System Process: Windows Service
T1480.002 Execution Guardrails: Mutual Exclusion
T1070.004 Indicator Removal on Host: File Deletion

*|0Cs contributed by @AlexGP on X.

Interested in learning more?

Save your spot for Inside Chrysalis, Rapid7's webinar led by Christiaan Beek on
Thursday, February 5th.

B O X M
Article Tags

CResearch) CLabs) CMaIware)

Ivan Feigl

. ! o AUTHOR POSTS >

Related blog posts

https://x.com/AIexGP
https://www.brighttalk.com/webcast/10457/661975?utm_source=blog&utm_medium=webcast&utm_content=blog-1-chrysalis-registration&utm_campaign=global-mdr-2026-q1-webinar-prospect-eng
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit&title=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit
https://twitter.com/intent/tweet?url=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit&text=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit
https://bsky.app/intent/compose?text=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit%20https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit
https://www.rapid7.com/blog/tag/research/
https://www.rapid7.com/blog/tag/labs/
https://www.rapid7.com/blog/tag/malware-latest-news/
https://www.rapid7.com/blog/author/ivan-feigl/
https://www.rapid7.com/blog/post/tr-chrysalis-notepad-supply-chain-risk-next-steps/
https://www.rapid7.com/

RAPIDY)

THREAT RESEARCH

Cloud Challenges in the Age of Remote Work: Rapid7's
2021 Cloud Misconfigurations Report

™ Shelby Matthews @

https://www.rapid7.com/blog/post/tr-chrysalis-notepad-supply-chain-risk-next-steps/
https://www.rapid7.com/blog/post/2021/09/09/cloud-challenges-in-the-age-of-remote-work-rapid7s-2021-cloud-misconfigurations-report/
https://www.rapid7.com/blog/post/2022/05/09/infographic-cloud-misconfigurations-dont-become-a-breach-statistic/
https://www.rapid7.com/

)7,

GET STARTED

Command Platform
Exposure Management
MDR Services

TAKE ACTION

Start a Free Trial
Take a Product Tour
Get Breach Support
Contact Sales

COMPANY

About Us
Leadership
Newsroom

Our Customers
Partner Programs
Investors

Careers

STAY INFORMED

Blog

Emergent Threat Response
Webinars & Events

Rapid7 Labs Research
Vulnerability Database

Security Fundamentals

RAPIDY)

https://www.rapid7.com/blog/post/2022/05/09/infographic-cloud-misconfigurations-dont-become-a-breach-statistic/
https://www.rapid7.com/blog/post/2022/04/20/2022-cloud-misconfigurations-report-a-quick-look-at-the-latest-cloud-security-breaches-and-attack-trends/
https://www.rapid7.com/
https://www.rapid7.com/platform/
https://www.rapid7.com/products/command/exposure-management/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/products/command/attack-surface-management-asm/trial/
https://www.rapid7.com/product-tours/
https://www.rapid7.com/services/incident-response/
https://www.rapid7.com/contact/
https://www.rapid7.com/about/
https://www.rapid7.com/about/leadership/
https://www.rapid7.com/about/news/
https://www.rapid7.com/customers/
https://www.rapid7.com/partners/
https://investors.rapid7.com/
https://careers.rapid7.com/
https://www.rapid7.com/blog/
https://www.rapid7.com/blog/tag/emergent-threat-response/
https://www.rapid7.com/about/events-webcasts/
https://www.rapid7.com/research/
https://www.rapid7.com/db/
https://www.rapid7.com/fundamentals/
https://www.rapid7.com/

Sign In

Support Portal

Product Documentation
Extension Library
Rapid7 Academy

Customer Escalation Portal

CONTACT SUPPORT

+1-866-390-8113

FOLLOW US
LinkedIn
X (Twitter)
Facebook
Instagram

Bluesky

© Rapid7

Legal Terms

Privacy Policy

Export Notice

Trust

Cookie List
Accessibility Statement

Cookies Settings

RAPIDY)

https://www.rapid7.com/blog/post/2022/04/20/2022-cloud-misconfigurations-report-a-quick-look-at-the-latest-cloud-security-breaches-and-attack-trends/
https://www.rapid7.com/blog/
https://insight.rapid7.com/saml/SSO
https://www.rapid7.com/for-customers/
https://docs.rapid7.com/
https://extensions.rapid7.com/
https://academy.rapid7.com/
https://information.rapid7.com/Customer-Escalation.html
tel:+1-866-390-8113
https://www.linkedin.com/company/39624
https://twitter.com/Rapid7
https://www.facebook.com/rapid7
https://www.instagram.com/rapid7/
https://bsky.app/profile/rapid7.com
https://www.rapid7.com/legal/
https://www.rapid7.com/privacy-policy/
https://www.rapid7.com/export-notice/
https://www.rapid7.com/trust/
https://www.rapid7.com/cookie-list/
https://www.rapid7.com/legal/website-accessibility-statement/
https://www.rapid7.com/

