
RETOUR AU BLOG

RECHERCHE SUR LES MENACES

La Porte dérobée de la Chrysalide :
une plongée approfondie dans la
boîte à outils de Lotus Blossom.

Ivan Feigl

2 février 2026 | Dernière mise à jour le 4 février 2026 | 19 minutes de lecture

DÉCOUVREZ RAPID7 MDR

Any questions about Rapid7's solution or
services? I can have a teammate jump in on

chat right now!
1

https://www.rapid7.com/blog/
https://www.rapid7.com/blog/author/ivan-feigl/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/

Rapid7 Labs, avec l’équipe Rapid7 MDR, a mis au jour une campagne sophistiquée

attribuée au groupe chinois APT Lotus Blossom. Actif depuis 2009, le groupe est connu

pour ses campagnes d’espionnage ciblées touchant principalement des organisations en

Asie du Sud-Est et plus récemment en Amérique centrale, se concentrant sur les

secteurs gouvernemental, télécom, aviation, infrastructures critiques et médias.

Notre enquête a identifié un incident de sécurité résultant d’une compromission

sophistiquée de l’infrastructure hébergeant Notepad++, qui a ensuite été utilisée pour

livrer une porte dérobée personnalisée jusque-là non documentée, que nous avons

baptisée Chrysalis .

⠀

Figure 1 : Télémétrie sur les échantillons personnalisés de porte dérobée

⠀

Au-delà de la découverte du nouvel implant, des preuves médico-légales nous ont permis

de découvrir plusieurs chargeurs personnalisés dans la nature. Un exemple, «

ConsoleApplication2.exe », se distingue par son utilisation de Microsoft Warbird, un

framework complexe de protection de code, pour masquer l’exécution du shellcode. Ce

blog propose une analyse technique approfondie de Chrysalis, du chargeur Warbird, et

https://www.rapid7.com/

de la tactique plus large consistant à mélanger des chargeurs simples avec des appels

système obscurs et non documentés.

Vecteur d’accès initial : Notepad++ et
update.exe
L’analyse médico-légale menée par l’équipe MDR suggère que le vecteur d’accès initial

correspond à un abus rendu public de l’infrastructure de distribution Notepad++. Bien

que les rapports fassent référence à la fois aux mécanismes de remplacement de plugins

et liés aux mises à jour, aucun artefact définitif n’a été identifié pour confirmer

l’exploitation de l’un ou l’autre. Le seul comportement confirmé est que l’exécution de «

notepad++.exe » puis de « GUP.exe » a précédé l’exécution d’un processus suspect «

update.exe » téléchargé depuis 95.179.213.0.

Analyse de update.exe

Figure 2 : Diagramme d’exécution de update.exe

⠀

L’analyse de « update.exe » montre que le fichier est en réalité un installateur NSIS, un

outil couramment utilisé par les APT chinois pour livrer la charge utile initiale.

Voici les fichiers d’installation NSIS extraits :

https://notepad-plus-plus.org/news/hijacked-incident-info-update/
https://www.rapid7.com/blog/post/2025/05/22/nsis-abuse-and-srdi-shellcode-anatomy-of-the-winos-4-0-campaign/
https://www.rapid7.com/

[NSIS].nsi

Description : Script d’installation NSIS

SHA-256 :

8ea8b83645fba6e23d48075a0d3fc73ad2ba515b4536710cda4f1f232718f53e

BluetoothService.exe

Description : renommé Bitdefender Submission Assistant utilisé pour le sideloading

DLL

SHA-256 :

2da00de67720f5f13b17e9d985fe70f10f153da60c9ab1086fe58f069a156924

BluetoothService

Description : Code-shell chiffré

SHA-256 : 77bfea78def679aa117f569a35e8fd1542df21f7e00e27f192c907e61d63a2e

log.dll

Description : DLL malveillante installée en parallèle par BluetoothService.exe

SHA-256 :

3bdc4c0637591533f1d4198a72a33426c01f69bd2e15ceee547866f65e26b7ad

⠀

Le script d’installation est chargé de créer un nouveau répertoire « Bluetooth » dans le

dossier « %AppData % », de copier les fichiers restants là-bas, de changer l’attribut du

répertoire en HIDDEN et d’exécuter BluetoothService.exe .

Chargement latéral DLL
Peu après l’exécution de BluetoothService.exe , qui est en réalité un véritable

assistant de soumission Bitdefender renommé et abusé pour le sideloading de DLL , un

log.dll malveillant était placé à côté de l’exécutable, ce qui le faisait charger au lieu de

la bibliothèque légitime. Deux fonctions exportées depuis log.dll sont appelées par

l’assistant de soumission Bitdefender : LogInit et LogWrite .

LogInit et LogWrite - chargement, déchiffrement,
exécution du shellcode
LogInit charge BluetoothService dans la mémoire du processus en cours.

https://www.rapid7.com/

LogWrite a un objectif plus sophistiqué : déchiffrer et exécuter le shellcode.

La routine de déchiffrement implémente un mécanisme de déchiffrement personnalisé à

l’exécution utilisé pour décompresser les données chiffrées en mémoire. Il tire le matériel

clé à partir de la valeur de hachage précédemment calculée et applique un algorithme de

type chiffrement en flux plutôt que des API cryptographiques standard. À un niveau

général, la routine de déchiffrement repose sur un générateur linéaire congruentiel, avec

les constantes standard 0x19660D et 0x3C6EF35F , combinées à plusieurs étapes

basiques de transformation des données pour récupérer la charge utile du texte clair.

Une fois déchiffré, la charge utile remplace le tampon d’origine et toute la mémoire

temporaire est libérée. L’exécution est ensuite transférée à cette nouvelle étape

déchiffrée, qui est traitée comme du code exécutable et invoquée avec un ensemble

prédéfini d’arguments, incluant le contexte d’exécution et les informations d’API résolues.

Figure 3 : Composants internes de LogWrite

Résolution IAT
Log.dll implémente une sous-routine de hachage d’API pour résoudre les API requises

lors de l’exécution, réduisant ainsi la probabilité d’être détecté par des antivirus et

d’autres solutions de sécurité.

Sous-programme de hachage API
L’algorithme de hachage va hacher les noms d’exportation en utilisant FNV-1a (le

hachage fnv-1a 0x811C9DC5, le premier fnv-1a 0x1000193 observé), puis appliquera un

finalizateur d’avalanche de type MurmurHash (constante de murmur 0x85EBCA6B

observée), et comparera le résultat à un hachage cible salé.

https://www.rapid7.com/

Analyse de la porte dérobée de la
Chrysalide
Le shellcode, une fois déchiffré par log.dll , est une porte dérobée personnalisée et

riche en fonctionnalités que nous avons nommée « Chrysalis ». Sa large gamme de

capacités indique qu’il s’agit d’un outil sophistiqué et permanent, et non d’un simple

utilitaire jetable. Il utilise des binaires légitimes pour installer une DLL conçue sous un

nom générique, ce qui rend la détection simple basée sur le nom de fichier peu fiable. Il

repose sur un hachage API personnalisé à la fois dans le chargeur et dans le module

principal, chacun avec sa propre logique de résolution. Cela est associé à une

obscurcation en couches et à une approche assez structurée de la communication C2.

Dans l’ensemble, l’échantillon semble avoir été développé activement au fil du temps, et

nous garderons un œil sur cette famille ainsi que sur les futures variantes qui

apparaîtront.

Déchiffrement du module principal
Une fois l’exécution passée au shellcode déchiffré depuis log.dll , le malware

commence par le déchiffrement du module principal via une simple combinaison de XOR,

d’opérations d’addition et de soustraction, avec une clé codée en dur gQ2JR&9 ; . Voir ci-

dessous la routine pseudocode du déchiffrement :

⠀

char XORKey[8] = "gQ2JR&9;";
DWORD counter = 0;
DWORD pos = BufferPosition;

while (counter < size) {
 BYTE k = XORKey[counter & 7];
 BYTE x = encrypted[pos];

 x = x + k;
 x = x ^ k;
 x = x - k;

 decrypted[pos] = x;

https://www.rapid7.com/

 pos++;
 counter++;
}

⠀

L’opération XOR est effectuée 5 fois au total, suggérant une disposition de section

similaire au format PE. Après le déchiffrement, le malware passera à une nouvelle

résolution dynamique IAT en utilisant LoadLibraryA pour acquérir un handle à

Kernel32.dll et GetProcAddress . Une fois les exportations résolues, le saut est effectué

vers le module principal.

Module principal
Le module déchiffré est un module réfléchissant de type PE qui exécute la séquence

d’initialisation du CRT MSVC avant de transférer le contrôle au point d’entrée principal du

programme. Une fois dans la fonction principale, le malware charge dynamiquement les

DLL dans l’ordre suivant : oleaut32.dll , advapi32.dll , shlwapi.dll , user32.dll ,

wininet.dll , ole32.dll et shell32.dll .

Les noms des DLL ciblées sont construits en cours de route, à l’aide de deux sous-

programmes distincts. Ces deux sous-programmes implémentent un schéma

d’obfuscation de caractères personnalisé dépendant de la position. Chaque caractère est

transformé à l’aide d’une combinaison de rotations de bits, d’opérations XOR

conditionnelles et d’arithmétique basée sur l’index, garantissant que des caractères

identiques s’encryptent différemment selon leur position. La seconde routine inverse ce

processus à l’exécution, reconstruisant la chaîne de texte en clair originale juste avant

son utilisation. Le but de ces deux fonctions n’est pas seulement de dissimuler les

chaînes, mais aussi de compliquer intentionnellement l’analyse statique et de nuire à la

détection basée sur la signature.

Après la reconstruction du nom DLL, le module principal implémente une autre routine de

hachage API, plus sophistiquée.

Sous-programme de hachage API

https://www.rapid7.com/

https://www.rapid7.com/

Figure 4 : Diagramme de hachage de l’API

⠀

La première différence entre cela et la routine de hachage de l’API utilisée par le chargeur

est que cette sous-routine n’accepte qu’un seul argument : le hachage de l’API cible. Pour

obtenir le handle DLL, le malware parcourt le PEB jusqu’à l’InMemoryOrderModuleList ,

puis analyse la table d’exportation de chaque module, en sautant l’exécutable principal,

jusqu’à ce qu’il résolve l’API souhaitée. Au lieu de s’appuyer sur des algorithmes de

hachage courants, la routine utilise un mélange arithmétique à plusieurs étapes avec des

constantes de finalisation à la MurmurHash . Les noms d’API sont traités en blocs de 4

octets à l’aide de plusieurs étapes de rotation et de multiplication, suivies d’une phase

finale de diffusion avant la comparaison avec le hachage fourni. Cette conception

complique considérablement la récupération statique des API résolues et réduit

l’efficacité de la détection traditionnelle basée sur la signature. En plan B, le résolveur

prend en charge la résolution directe via GetProcAddress si le hachage cible n’est pas

détecté via la méthode de hachage. Le pointeur vers GetProcAddress est obtenu plus tôt

lors de la phase de « préparation du module principal ».

⠀

Figure 5 : Hachage interne de l’API

Déchiffrement de configuration

https://www.rapid7.com/

L’étape suivante dans l’exécution du malware est de déchiffrer la configuration. La

configuration chiffrée est stockée dans le fichier BluetoothService à un 0x30808 décalé

de la taille de 0x980. L’algorithme pour le déchiffrement est RC4 avec la clé

qwhvb^435h&*7 . Cela a révélé les informations suivantes :

URL de Command and Control (C2) :

https://api.skycloudcenter.com/a/chat/s/70521ddf-a2ef-4adf-9cf0-6d8e24aaa821

Nom du module : BluetoothService

Agent utilisateur : Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64)

AppleWebKit/537.36 (KHTML, comme Gecko) Chrome/80.0.4044.92 Safari/537.36

La structure URL du C2 est intéressante, en particulier la section /a/chat/s/{GUID}), qui

semble être le même format utilisé par les points de terminaison de chat API Deepseek.

On dirait que l’acteur imite la circulation pour rester discret.

La configuration déchiffrée ne donne pas beaucoup d’informations utiles à part le C2. Le

nom du module est trop générique et l’agent utilisateur appartient au navigateur Google

Chrome. L’URL se résout à 61.4.102.97 , adresse IP basée en Malaisie . Au moment de

la rédaction de ce blog, aucun autre fichier n’a été vu communiquant avec cette IP et

cette URL.

Persistance et arguments en ligne de commande

Pour déterminer la prochaine étape à suivre, le malware vérifie les arguments en ligne de

commande mis en évidence dans le tableau 1 et choisit l’un des quatre chemins

possibles. Si le nombre d’arguments en ligne de commande dépasse deux, le processus

se termine. S’il n’y a pas d’argument supplémentaire, la persistance est principalement

mise en place via la création de services ou le registre comme mécanisme de secours.

Voir le tableau 2 ci-dessous :

Argument Mode Action

(Aucun) Installation Installe la persistance (Service ou Registre) pointant

vers le binaire avec le drapeau -i , puis se termine.

-I Lanceur Génère une nouvelle instance d’elle-même avec le

drapeau -k via ShellExecuteA , puis se termine.

-K Charge

utile

Saute les vérifications d’installation et exécute la

logique malveillante principale (C2 et Shellcode).

⠀

https://www.rapid7.com/

Avec les arguments attendus, le malware passe à sa fonctionnalité principale : recueillir

des informations sur l’actif infecté et initier la communication avec C2.

Collecte d’informations et communication C2
Un mutex Global\\Jdhfv_1.0.1 est enregistré pour imposer l’exécution d’une instance

unique sur l’hôte. S’il existe déjà, le malware est éliminé. Si la vérification est correcte, la

collecte d’informations commence par la recherche des informations suivantes : heure

actuelle, antivirus installés, version du système d’exploitation, nom d’utilisateur et nom de

l’ordinateur. Ensuite, le nom de l’ordinateur, le nom d’utilisateur, la version du système

d’exploitation et la chaîne 1.01 sont concaténés et les données sont hachées à l’aide

de FNV-1A . Cette valeur est ensuite transformée en sa représentation décimale ascii et

utilisée très probablement comme identifiant unique de l’hôte infecté.

Le tampon final utilise un point comme délimiteur et suit ce schéma :

⠀

 

<UniqueID>.<ComputerName>.<UserName>.<OSVersion>.<127.0.0.1>.<AVs>.<DateAndT

⠀

La dernière information ajoutée au début du tampon est une chaîne 4Q . Le tampon est

alors chiffré RC4 avec la clé vAuig34 %^325hGV .

Après le chiffrement des données, le malware établit une connexion Internet en utilisant

l’agent utilisateur et le api.skycloudcenter.com C2 mentionnés précédemment via le port

443. Les données sont ensuite transférées via HttpSendRequestA en utilisant la méthode

POST . La réponse du serveur est ensuite lue dans un tampon temporaire qui est ensuite

déchiffré en utilisant la même clé vAuig34 %^325hGV .

Traitement des réponses et des commandes

Note : Le serveur C2 était déjà hors ligne lors de l’analyse initiale, empêchant la

récupération de toute donnée réseau. En conséquence, et en raison de la complexité du

malware, certaines parties de l’analyse suivante peuvent contenir de légères

inexactitudes.

La réponse du C2 subit plusieurs vérifications avant un traitement supplémentaire.

D’abord, le code de réponse HTTP est comparé à la valeur codée en dur 200 (0xC8),

https://www.rapid7.com/

indiquant une requête réussie, suivi d’une validation du handle WinInet associé pour

s’assurer qu’aucune erreur n’est survenue. Le malware vérifie alors l’intégrité de la charge

utile reçue et l’exécution ne se poursuit que si au moins une structure valide est détectée.

Ensuite, le malware examine les données de réponse d’un petit tag pour déterminer quoi

faire ensuite. Tag est utilisé comme condition pour une instruction switch avec 16 cas

possibles. Le cas par défaut va simplement configurer un drapeau pour TRUE . Configurer

ce drapeau entraînera un saut complet hors de l’interrupteur. D’autres boîtiers

d’interrupteurs incluent les options suivantes :

⠀

Représentation des

chars

Représentation

hexagonale

Objectif

4T 0x3454 Coque interactive de spawn

4U 0x3455 Envoyez 'OK' à C2

4V 0x3456 Processus de création

4W 0x3457 Écrire le fichier sur disque

4X 0x3458 Écrire un morceau dans un

fichier ouvert

4Y 0x3459 Lecture et envoi des données

4Z 0x345A Rupture avec l’interrupteur

4\\ 0x345C Désinstaller / Nettoyer

4] 0x345D Dors

4_ 0x345F Obtenez des informations sur

les disques logiques

4' 0x3460 Énumérer les informations des

fichiers

4A 0x3661 Supprimer fichier

4b 0x3662 Créer un répertoire

4c 0x3463 Obtenir un fichier depuis C2

4d 0x3464 Envoyer le fichier vers C2

https://www.rapid7.com/

⠀

4T - Le malware implémente un shell cmd.exe inverse entièrement interactif en

utilisant des pipes redirigées. Les commandes entrantes du C2 sont converties de l’UTF-

8 vers la page de code OEM du système avant d’être écrites en entrée standard du

shell, tandis qu’un thread dédié lit en continu la sortie du shell, la convertit de l’encodage

OEM vers l’UTF-8 via l’API GetOEMCP , puis renvoie le résultat vers le C2.

4V - Cette option permet l’exécution à distance de processus en invoquant

CreateProcessW sur une ligne de commande fournie par C2 et en relayant l’état

d’exécution vers le C2.

4W - Cette option implémente une capacité d’écriture de fichiers à distance, analysant

une réponse structurée contenant un chemin de destination et le contenu du fichier,

convertissant les codages si nécessaire, écrivant les données sur le disque , et

renvoyant un message d’état formaté au serveur de commande et contrôle.

4X - Similaire au commutateur précédent, il supporte une capacité d’écriture de fichiers

à distance, permettant au C2 de déposer des fichiers arbitraires sur le système victime

en fournissant un nom de fichier UTF-8 et un blob de données associé .

4Y - Switch implémente une capacité de lecture de fichiers à distance. Il ouvre un fichier

spécifié, en récupère la taille, lit l’intégralité du contenu en mémoire, puis transmet les

données au C2 .

4\\ - L’option met en place un mécanisme complet d’auto-retraite . Il supprime les

fichiers auxiliaires de charge utile, supprime les artefacts de persistance à la fois de la

ruche du registre de service Windows et de la clé Exécution , génère et exécute un

fichier batch temporaire u.bat de supprimer l’exécutable en cours d’exécution après la

terminaison, et enfin supprime le script batch lui-même.

4_ - Ici, le malware énumère les informations sur les pilotes logiques à l’aide des API

GetLogicalDriveStringsA et GetDriveTypeA et renvoie ces informations au C2.

4' - Cette option de commutateur partage des similitudes avec la fonction d’exfiltration

de données précédemment analysée - 4Y . Cependant, son objectif principal diffère. Au

lieu de transmettre des données préexistantes, il énumère les fichiers dans un

répertoire spécifié, collecte les métadonnées par fichier (horodatages, taille et nom de

fichier), sérialise les résultats dans un format tampon personnalisé, et envoie la liste

agrégée au C2.

4a - 4b - 4c - 4d - In the last 4 cases, malware implements a custom file transfer

protocol over its C2 channel. Commands 4a and 4b act as control messages used to

initialize file download and upload operations respectively, including file paths, offsets,

https://www.rapid7.com/

and size validation. Once initialized, the actual data transfer occurs in a chunked fashion

using commands 4c (download) and 4d (upload) . Each chunk is wrapped in a fixed-

size 40-byte response structure, validated for successful HTTP status and correct

structure count before processing. Transfers continue until the C2 signals completion via

a non-zero termination flag, at which point file handles and buffers are released.

Additional artifacts discovered on the infected host
During the initial forensics analysis of the affected asset, Rapid7’s MDR team observed

execution of following command:

⠀

C:\ProgramData\USOShared\svchost.exe-nostdlib -run
C:\ProgramData\USOShared\conf.c

⠀

The retrieved folder “USOShared” from the infected asset didn’t contain svchost.exe but it

contained “libtcc.dll” and “conf.c”. The hash of the binary didn’t match any known

legitimate version but the command line arguments and associated “libtcc.dll” suggested

that svchost.exe is in fact renamed Tiny-C-Compiler. To confirm this, we replicated the

steps of the attacker successfully loaded shellcode from “conf.c” into the memory of

“tcc.exe”, confirming our previous hypothesis.

Analysis of conf.c

The C source file contains a fixed size (836) char buffer containing shellcode bytes which

is later casted to a function pointer and invoked. The shellcode is consistent with 32-bit

version of Metasploit’s block API.

The shellcode loads Wininet.dll using LoadLibraryA , resolves Internet-related APIs

such as InternetConnectA and HttpSendRequestA , and downloads a file from

api.wiresguard.com/users/admin . The file is read into a newly allocated buffer, and

execution is then transferred to the start of the 2000-byte second-stage shellcode.

⠀

https://github.com/phoenixthrush/Tiny-C-Compiler
https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block_api.asm
https://www.rapid7.com/

Figure 6: Shellcode decryption stub

⠀

This stub is responsible for decrypting the next payload layer and transferring execution

to it. It uses a rolling XOR-based decryption loop before jumping directly to the

decrypted code.

A quick look into the decrypted buffer revealed an interesting blob with a repeated string

CRAZY , hinting at an additional XORed layer, later confirmed by a quick test.

⠀

https://www.rapid7.com/

Figure 7: Repeated XOR key “CRAZY”

⠀

Figure 8: Decrypted configuration

⠀

Parsing of the decrypted configuration data confirms that retrieved shellcode is Cobalt

Strike (CS) HTTPS beacon with http-get api.wiresguard.com/update/v1 and http-post

api.wiresguard.com/api/FileUpload/submit urls.

Analysis of the initial evidence revealed a consistent execution chain: a loader embedding

Metasploit block_api shellcode that downloads a Cobalt Strike beacon . The unique

decryption stub and configuration XOR key CRAZY allowed us to pivot into an external

hunt, uncovering additional loader variants.

⠀

https://www.rapid7.com/

Figure 9: Execution flow followed by conf.c and other loaders

Variation of loaders and shellcode

In the last year, four similar files were uploaded to public repositories.

Loader 1:

SHA-256: 0a9b8df968df41920b6ff07785cbfebe8bda29e6b512c94a3b2a83d10014d2fd

Shellcode SHA-256:

4c2ea8193f4a5db63b897a2d3ce127cc5d89687f380b97a1d91e0c8db542e4f8

User Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/92.0.4472.114 Safari/537.36

URL hosting CS beacon: http://59[.]110.7.32:8880/uffhxpSy

CS http-get URL: http://59[.]110.7.32:8880/api/getBasicInfo/v1

CS http-post URL: http://59[.]110.7.32:8880/api/Metadata/submit

Loader 2:

SHA-256:

e7cd605568c38bd6e0aba31045e1633205d0598c607a855e2e1bca4cca1c6eda

Shellcode SHA-256:

078a9e5c6c787e5532a7e728720cbafee9021bfec4a30e3c2be110748d7c43c5

https://www.rapid7.com/

User Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/92.0.4472.114 Safari/537.36

URL hosting CS beacon: http://124[.]222.137.114:9999/3yZR31VK

CS http-get URL: http://124[.]222.137.114:9999/api/updateStatus/v1

CS http-post URL: http://124[.]222.137.114:9999/api/Info/submit

Loader 3:

SHA-256: b4169a831292e245ebdffedd5820584d73b129411546e7d3eccf4663d5fc5be3

Shellcode SHA-256:

7add554a98d3a99b319f2127688356c1283ed073a084805f14e33b4f6a6126fd

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/134.0.0.0 Safari/537.36

URL hosting CS beacon: https://api[.]wiresguard[.]com/users/system

CS http-get URL: https://api[.]wiresguard[.]com/api/getInfo/v1

CS http-post URL: https://api[.]wiresguard[.]com/api/Info/submit

Loader 4:

SHA-256: fcc2765305bcd213b7558025b2039df2265c3e0b6401e4833123c461df2de51a

Shellcode SHA-256:

7add554a98d3a99b319f2127688356c1283ed073a084805f14e33b4f6a6126fd

User Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/134.0.0.0 Safari/537.36

URL hosting CS beacon: https://api[.]wiresguard[.]com/users/system

CS http-get URL: https://api[.]wiresguard[.]com/api/getInfo/v1

CS http-post URL: https://api[.]wiresguard[.]com/api/Info/submit

⠀

From all the loaders we analyzed, Loader 3 piqued our interest for three reasons -

shellcode encryption technique, execution , and almost identical C2 to beacon that

was found on the infected asset. All the previous samples used a pretty common

technique to execute the shellcode - decrypt embedded shellcode in user space, change

the protection of memory region to executable state, and invoke decrypted code via

https://www.rapid7.com/

CreateThread / CreateRemoteThread ; Loader 3 (original name “ConsoleApplication2.exe”)

violates this approach.

Analysis of Loader 3 - ConsoleApplication2.exe

At the first glance, the logic of the sample is straightforward: Load the DLL clipc.dll ,

overwrite first 0x490 bytes, change the protection to PAGE_EXECUTE_READ (0x20), and

then invoke NtQuerySystemInformation . Two interesting notes to highlight here - bytes

copied into the memory region of clipc.dll are not valid shellcode and

NtquerySystemInformation is used to “Retrieve the specified system information”, not to

execute code.

⠀

Figure 10: Snippet from ConsoleApplication2.exe

⠀

Looking into the copied data reveals two “magic numbers” DEADBEEF and CAFEAFE , but

nothing else. However, the execution of shellcode is somehow successful, so what’s

going on?

⠀

https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://www.rapid7.com/

Figure 11: Data copied into clipc.dll

⠀

According to the official documentation, the first parameter of NtQuerySystemInformation

is of type SYSTEM_INFORMATION_CLASS which specifies the category of system information

to be queried. During static analysis in IDA Pro, this parameter was initially identified as

SystemExtendedProcessInformation|0x80 but looking for this value in MSDN and other

public references didn’t provide any explanation on how the execution was achieved. But,

searching for the original value passed to the function (0xB9) uncovered something

interesting. The following blog by DownWithUp covers Microsoft Warbird, which could be

described as an internal code protection and obfuscation framework. These resources

confirm IDA misinterpretation of the argument which should be

SystemCodeFlowTransition , a necessary argument to invoke Warbird functionality.

Additionally, DownWithUp’s blog post mentioned the possible operations:

⠀

https://downwithup.github.io/blog/post/2023/04/23/post9.html
https://cirosec.de/en/news/abusing-microsoft-warbird-for-shellcode-execution/
https://www.rapid7.com/

Figure 12: Warbird operations documented by DownWithUp

⠀

Referring to the snippet we saw from “ConsoleApplication2.exe”, the operation is equal to

WbHeapExecuteCall which gives us the answer on how the shellcode gained execution.

Thanks to work of other researchers, we also know that this technique only works if the

code resides inside of memory of Microsoft signed binary, thus revealing why clipc.dll

has been used. The blog post from cirosec also contains a link for their POC of this

technique which is almost the same replica of “ConsoleApplication2.exe”, hinting that

author of “ConsoleApplication2.exe” simply copied it and modified to execute

Metasploit block_api shellcode instead of the benign calc from POC. The comparison of

the Cobalt Strike beacon configuration delivered via “conf.c” and

“ConsoleApplication2.exe” revealed shared trades between these two, most notably

domain , public key , and process injection technique .

Attribution to Lotus Blossom
Attribution is primarily based on strong similarities between the initial loader observed in

this intrusion and previously published Symantec research. Particularly the use of a

https://github.com/cirosec/warbird-demos/blob/main/Loader/Loader.cpp
https://sed-cms.broadcom.com/system/files/threat-hunter-whitepaper/2025-04/2025_04_ChinaLinked_Espionage_Actors.pdf
https://www.rapid7.com/

renamed “Bitdefender Submission Wizard” to side-load “log.dll” for decrypting and

executing an additional payload.

In addition, similarities of the execution chain of “conf.c” retrieved from the infected asset

and other loaders that we found, supported by the same public key extracted from CS

beacons delivered through “conf.c” and “ConsoleApplication2.exe” suggests with

moderate confidence, that the threat actor behind this campaign is likely Lotus Blossom.

Conclusion
The discovery of the Chrysalis backdoor and the Warbird loader highlights an evolution

in Lotus Blossom's capabilities. While the group continues to rely on proven techniques

like DLL sideloading and service persistence, their multi-layered shellcode loader and

integration of undocumented system calls (NtQuerySystemInformation) mark a clear shift

toward more resilient and stealth tradecraft.

What stands out is the mix of tools: the deployment of custom malware (Chrysalis)

alongside commodity frameworks like Metasploit and Cobalt Strike, together with the

rapid adaptation of public research (specifically the abuse of Microsoft Warbird). This

demonstrates that Lotus Blossom is actively updating their playbook to stay ahead of

modern detection.

Rapid7 customers

InsightIDR and MDR
InsightIDR and Managed Detection and Response customers have existing detection

coverage through Rapid7's expansive library of detection rules. Suspicious Process -

Child of Notepad++ Updater (gup.exe) and Suspicious Process - Chrysalis Backdoor are

two examples of deployed detections that will alert on behavior related to Chrysalis.

Rapid7 will also continue to iterate detections as new variants emerge, giving customers

continuous protection without manual tuning.

Intelligence Hub
Customers using Rapid7’s Intelligence Hub gain direct access to Chrysalis backdoor,

Metasploit loaders and Cobalt Strike IOCs, including any future indicators as they are

identified.

https://www.rapid7.com/

Indicators of compromise (IoCs)

File indicators
Note: data may appear cut-off or hidden due to the string lengths in column 2. You can

copy the full string by highlighting what is visible.

update.exe a511be5164dc1122fb5a7daa3eef9467e43d8458425b15a64

[NSIS.nsi] 8ea8b83645fba6e23d48075a0d3fc73ad2ba515b4536710c

BluetoothService.exe 2da00de67720f5f13b17e9d985fe70f10f153da60c9ab1086f

BluetoothService 77bfea78def679aa1117f569a35e8fd1542df21f7e00e27f192c

log.dll 3bdc4c0637591533f1d4198a72a33426c01f69bd2e15ceee5

u.bat 9276594e73cda1c69b7d265b3f08dc8fa84bf2d6599086b9

conf.c f4d829739f2d6ba7e3ede83dad428a0ced1a703ec582fc73

libtcc.dll 4a52570eeaf9d27722377865df312e295a7a23c3b6eb9919

admin 831e1ea13a1bd405f5bda2b9d8f2265f7b1db6c668dd2165c

loader1 0a9b8df968df41920b6ff07785cbfebe8bda29e6b512c94a3

uffhxpSy 4c2ea8193f4a5db63b897a2d3ce127cc5d89687f380b97a1d

loader2 e7cd605568c38bd6e0aba31045e1633205d0598c607a855

3yzr31vk 078a9e5c6c787e5532a7e728720cbafee9021bfec4a30e3c

ConsoleApplication2.exe b4169a831292e245ebdffedd5820584d73b129411546e7d3

system 7add554a98d3a99b319f2127688356c1283ed073a084805f

s047t5g.exe fcc2765305bcd213b7558025b2039df2265c3e0b6401e48

Network indicators

95.179.213.0

https://www.rapid7.com/

api[.]skycloudcenter[.]com

api[.]wiresguard[.]com

61.4.102.97

59.110.7.32

124.222.137.114

MITRE TTPs

ATT&CK ID Name

T1204.002 User Execution: Malicious File

T1036 Masquerading

T1027 Obfuscated Files or Information

T1027.007 Obfuscated Files or Information: Dynamic API Resolution

T1140 Deobfuscate/Decode Files or Information

T1574.002 DLL Side-Loading

T1106 Native API

T1055 Process Injection

T1620 Reflective Code Loading

T1059.003 Command and Scripting Interpreter: Windows Command Shell

T1083 File and Directory Discovery

T1005 Data from Local System

T1105 Ingress Tool Transfer

T1041 Exfiltration Over C2 Channel

T1071.001 Application Layer Protocol: Web Protocols (HTTP/HTTPS)

T1573 Encrypted Channel

https://www.rapid7.com/

T1547.001 Boot or Logon Autostart Execution: Registry Run Keys

T1543.003 Create or Modify System Process: Windows Service

T1480.002 Execution Guardrails: Mutual Exclusion

T1070.004 Indicator Removal on Host: File Deletion

*IOCs contributed by @AIexGP on X.

Interested in learning more?

Save your spot for Inside Chrysalis, Rapid7's webinar led by Christiaan Beek on

Thursday, February 5th.

Article Tags

Research Labs Malware

Ivan Feigl

AUTHOR POSTS

Related blog posts

https://x.com/AIexGP
https://www.brighttalk.com/webcast/10457/661975?utm_source=blog&utm_medium=webcast&utm_content=blog-1-chrysalis-registration&utm_campaign=global-mdr-2026-q1-webinar-prospect-eng
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit&title=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit
https://twitter.com/intent/tweet?url=https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit&text=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit
https://bsky.app/intent/compose?text=The%20Chrysalis%20Backdoor%3A%20A%20Deep%20Dive%20into%20Lotus%20Blossom%E2%80%99s%20toolkit%20https%3A%2F%2Fwww.rapid7.com%2Fblog%2Fpost%2Ftr-chrysalis-backdoor-dive-into-lotus-blossoms-toolkit
https://www.rapid7.com/blog/tag/research/
https://www.rapid7.com/blog/tag/labs/
https://www.rapid7.com/blog/tag/malware-latest-news/
https://www.rapid7.com/blog/author/ivan-feigl/
https://www.rapid7.com/blog/post/tr-chrysalis-notepad-supply-chain-risk-next-steps/
https://www.rapid7.com/

THREAT RESEARCH

Cloud Challenges in the Age of Remote Work: Rapid7’s
2021 Cloud Misconfigurations Report

Shelby Matthews

https://www.rapid7.com/blog/post/tr-chrysalis-notepad-supply-chain-risk-next-steps/
https://www.rapid7.com/blog/post/2021/09/09/cloud-challenges-in-the-age-of-remote-work-rapid7s-2021-cloud-misconfigurations-report/
https://www.rapid7.com/blog/post/2022/05/09/infographic-cloud-misconfigurations-dont-become-a-breach-statistic/
https://www.rapid7.com/

THREAT RESEARCH

[Infographic] Cloud Misconfigurations: Don't Become a
Breach Statistic

GET STARTED

Command Platform

Exposure Management

MDR Services

TAKE ACTION

Start a Free Trial

Take a Product Tour

Get Breach Support

Contact Sales

COMPANY

About Us

Leadership

Newsroom

Our Customers

Partner Programs

Investors

Careers

STAY INFORMED

Blog

Emergent Threat Response

Webinars & Events

Rapid7 Labs Research

Vulnerability Database

Security Fundamentals

https://www.rapid7.com/blog/post/2022/05/09/infographic-cloud-misconfigurations-dont-become-a-breach-statistic/
https://www.rapid7.com/blog/post/2022/04/20/2022-cloud-misconfigurations-report-a-quick-look-at-the-latest-cloud-security-breaches-and-attack-trends/
https://www.rapid7.com/
https://www.rapid7.com/platform/
https://www.rapid7.com/products/command/exposure-management/
https://www.rapid7.com/services/managed-detection-and-response-mdr/
https://www.rapid7.com/products/command/attack-surface-management-asm/trial/
https://www.rapid7.com/product-tours/
https://www.rapid7.com/services/incident-response/
https://www.rapid7.com/contact/
https://www.rapid7.com/about/
https://www.rapid7.com/about/leadership/
https://www.rapid7.com/about/news/
https://www.rapid7.com/customers/
https://www.rapid7.com/partners/
https://investors.rapid7.com/
https://careers.rapid7.com/
https://www.rapid7.com/blog/
https://www.rapid7.com/blog/tag/emergent-threat-response/
https://www.rapid7.com/about/events-webcasts/
https://www.rapid7.com/research/
https://www.rapid7.com/db/
https://www.rapid7.com/fundamentals/
https://www.rapid7.com/

SEE ALL POSTS
FOR CUSTOMERS

Sign In

Support Portal

Product Documentation

Extension Library

Rapid7 Academy

Customer Escalation Portal

CONTACT SUPPORT

+1-866-390-8113

FOLLOW US

LinkedIn

X (Twitter)

Facebook

Instagram

Bluesky

© Rapid7

Legal Terms

Privacy Policy

Export Notice

Trust

Cookie List

Accessibility Statement

Cookies Settings

https://www.rapid7.com/blog/post/2022/04/20/2022-cloud-misconfigurations-report-a-quick-look-at-the-latest-cloud-security-breaches-and-attack-trends/
https://www.rapid7.com/blog/
https://insight.rapid7.com/saml/SSO
https://www.rapid7.com/for-customers/
https://docs.rapid7.com/
https://extensions.rapid7.com/
https://academy.rapid7.com/
https://information.rapid7.com/Customer-Escalation.html
tel:+1-866-390-8113
https://www.linkedin.com/company/39624
https://twitter.com/Rapid7
https://www.facebook.com/rapid7
https://www.instagram.com/rapid7/
https://bsky.app/profile/rapid7.com
https://www.rapid7.com/legal/
https://www.rapid7.com/privacy-policy/
https://www.rapid7.com/export-notice/
https://www.rapid7.com/trust/
https://www.rapid7.com/cookie-list/
https://www.rapid7.com/legal/website-accessibility-statement/
https://www.rapid7.com/

